2.2 Superhard Materials

The 0th Law" of Relative Hardness

If A can scratch B, A is harder than B.

The Hardest Known Material

Diamond

Mohs Hardness for Minerals (Friedrich Mohs, 1812)

The Mohs scale of mineral hardness is based on the ability of one natural sample of matter to scratch another.

Mohs hardness hardness	Mineral	Chemical formula	Absolute	
1	Talc	Mg3Si4O10(OH)2		1
2	Gypsum	CaSO4·2H2O	3	
3	Calcite	CaCO3	9	
4	Fluorite	CaF2	21	
5	Apatite	Ca5(PO4)3(OH-,CI-,F-)	48	
6	Orthoclase Felds	bar KAISi3O ₈		72
7	Quartz	SiO2	100	
8	Topaz	Al2SiO4(OH-,F-)2		200
9	Corundum	AI2O3	400	
10	Diamond	С		1600

Known Natural or Manmade Superhard Materials

120 Ħ $H_{v}=2(k^{2}G)^{0.585}-3$ Dia. 100 Where k=G/Bc-BC₂N Diamond (natural, C) 80 c-BC H_v (GPa) 00 ⁶ **Cubic boron nitrides** B.C.ReB Bct-C₄ (calc.) (manmade, *c*-BN) BN **Cubic boron carbon nitride** 40 CrB₄ (calc. (manmade, *c*-BC₂N) Expt 20 Calc (b)100 200 300 400 500 600 700 800 $k^2 G$ (GPa)

Candidates for Superhard Materialss

Hardness: a mechanical property, but dictated by the electrons (not too few e: no inert, alkali, or alkali earth elements)

Candidates for Superhard Materials

 Hardness: a mechanical property, but dictated by the electrons (not too few e: no inert, alkali, or alkali earth elements)
 High symmetry rules: hard in every direction

(tetrahedral symmetry preferred)

Candidates for Superhard Materials

- Hardness: a mechanical property, but dictated by the electrons (not too few e: no inert, alkali, or alkali earth elements)
- High symmetry rules: hard in every direction (tetrahedral symmetry preferred)
- Metals are less stable than insulators (not too many e: no F, Cl, ...)

Candidates for Superhard Materials

- Hardness: a mechanical property, but dictated by the electrons (not too few e: no inert, alkali, or alkali earth elements)
- High symmetry rules: hard in every direction (tetrahedral symmetry preferred)
- Metals are less stable than insulators (not too many e: no F, Cl, ... Q: magic element with 7 legs?)
- Direct sticking on nuclei

(not too many shells: only C, BN...)

Superhard materials

courtesy of

Xing-Qiu Chen

Institute of Metal Research, Chinese Academy of Sciences April, 2012

Vickers hardness (Smith & Sandland, Vickers Ltd., 1921)

$$H_V = \frac{F}{S} = 2F \frac{Sin\left(\frac{\theta}{2}\right)}{d^2} = 0.001854 \frac{F}{d^2} \quad (\text{GPa})$$

Typical Superhard Materials

Diamond, the hardest material known,
 Cubic boron carbon nitride, *c*-BC₂N,
 Cubic boron nitrides, *c*-BN.

Diamond

X.-Q. Chen et al, Intermetallics, 19, 1275 (2011); Phys. Rev. B, 84, 121405(R) (2011)

Deficiencies of superhard materials

Diamond It is not effective for cutting ferrous (Fe²⁺) metals, including steel, because of a chemical reaction that produces iron carbide.

They do not occur naturally and c-BN must be synthesized under c-BC₂N conditions of extreme pressure and temperature or CVD, making them quite expensive.

Therefore, new superhard materials, in particular, without the need of high-pressure synthesis, are not only of great scientific interest, but also could be very useful.

What makes diamond hardest?

In diamond, tetrahedrally bonded sp³ carbon atoms form a three-dimensional, covalent network of high symmetry.

The trigonal sp² bonds in graphite form sheets with shorter and stronger carbon-carbon bonds. But only weak van der Waals interactions hold the sheets together, allowing layers of graphite to cleave readily. Therefore, graphite is soft.

Superhardness: Dream and Reality

New superhard materials

by combining high hardness with chemical inertness and low-cost synthesis as well as without the need of high pressure, could quickly yield practical benefits, for example, by providing a replacement for cubic boron nitride for cutting and polishing steel.

Inspiration by *X*Al₁₂

Strength and ductility have always been one of the crucial issues to study for metal materials.

Aluminum is regarded as a typical *sp*-bonded metal with electronic structure described totally by free-electrons model. Pure aluminum exhibits good ductility and plastic-deformation properties.

How about the Al-enriched compounds XAI_{12} (X=Cr, Mo, W, Mn, Tc, Re)?

Al₁₂X and FCC-Al: Similarity and Difference?

In FCC Al each Al has twelve nearest-neighbor Al atoms, forming a Al_{12} tetradecahedron whereas in the $Al_{12}X$ compounds each X atom is surrounded by an icosahedron of twelve Al atoms (called Al_{12} icosahedron). X = Cr, Mo, W, Mn, Tc, Re

Strong mechanical properties in Al₁₂X resulting from the emergent covalent bonds

Classical Cauchy Pressure $(C_{12}-C_{44})$

[1] D. G. Pettifor, Materials Science and Technology 8, 345-349 (1992)

In the 1990s Pettifor ^[1] proposed this criterion:

 C_{12} - $C_{44} > 0$ metallic bonds C_{12} - $C_{44} < 0$ Covalent bonds

The conclusion is in agreement with our analysis of electronic structure.

Classical Pugh Modulus Ratio (G/B)

Compounds	C ₁₁	C ₁₂	<i>C</i> ₄₄	G	В	E	V	G/B	C_{12} - C_{44}
AI ₁₂	99.6	50.7	10.7	15.0	67.0	41.9	0.40	0.22	40.0
Al _{cal.}	111	57	28	27.6	75.0	73.7	0.34	0.37	29.0
Al _{exp.}	114.3	61.9	31.6	29.3	79.4	78.3	0.34	0.37	30.3
Al ₁₂ Cr	153.8	53.9	61.0	56.3	87.2	139.0	0.23	0.65	-7.1
Al ₁₂ Mo	167.2	56.3	59.5	57.8	93.3	143.8	0.24	0.62	-3.2
$AI_{12}W$	171.8	58.1	60.8	59.2	96.0	147.3	0.24	0.62	-2.7
Al ₁₂ Mn	190.1	41.8	75.5	75.0	91.3	176.6	0.18	0.82	-33.7
Al ₁₂ Tc	194.7	44.6	81.8	79.0	94.6	185.5	0.17	0.84	-37.2
Al ₁₂ Re	197.1	49.6	83.4	79.4	98.8	187.9	0.18	0.80	-33.8

In as early as 1954, Pugh proposed a relation between the elastic and plastic properties of pure polycrystalline metals and stated that G/B(Called Pugh's modulus ratio)^[2].

$G/B < 0.571 \rightarrow$ ductile; $G/B > 0.571 \rightarrow$ brittle

[2] S. F. Pugh, Phil. Mag., 45 823(1954)

Two classical criteria

Pettifor's criterion: For metallic non-directional bonding compounds, the Cauchy pressure $(C_{12}-C_{44})$ value is typically positive. The larger positive value represents a more metallic bonding. The negative value signifies a covalent bonding framework.

--- D. G. Pettifor, Materials Science and Technology 8, 345-349 (1992)

Pugh's criterion: If G/B>0.57, the materials behaves in a brittle manner. The higher the value of G/B, the more brittle the materials.

---- S. F. Pugh, Phil. Mag., 45 823(1954)

C₁₂-**C**₄₄ Versus *G*/*B*

Correlation between C_{12} - C_{44} and G/B for 35 aluminides

Summaries for a wide variety of materials

572 Groups

Pure elements: C_{12} - C_{44} versus G/B

G/B

Classic correlations between Hardness and elastic moduli

New correlation of hardness with *G*/*B*

Assuming materials fail in the elastic scale

Hardness?

$$H_{v} = \frac{2Fsin(\theta/2)}{d^{2}}$$
(1)
$$G = \frac{F}{4Atan(\alpha)}$$
(2)

■ The indenter can be divided into four triangular based pyramid indenters.

The Vickers hardness is measured within the elastic scale.

$$A = cA^* = \frac{c}{8}d^2tan(\alpha) \quad (3)$$
$$G = \frac{2F}{d^2tan^2(\alpha)} \quad (4)$$

$$H_{v} = Gtan^{2}(\alpha)sin(\theta/2) \quad (5)$$

 $H_v = 0.151G.$

Comparison with previous models

New Superhard Material without the need of high pressure

Discovery of new superhard material by design: CrB₄

Physical origin of superhardness of CrB₄

 C_4

 $\operatorname{CrB}_4(\operatorname{old})$

 CrB_4 (new)

(a) $Fd\overline{3}m$ (cF8)

diamond

(b) *I*₄/mmm (tI8)
Phys Rev Lett
104, 125504
(2010).

(c) *Immm* (*oI*10) Acta Chem. Scand., 22, 3103 (1968).

(d) *Pnnm* (*oP*10)

Haiyang Niu, et al., Phys. Rev. B., (in press, 2012)

Confirmation of new structure CrB₄

Electronic origin of distortion for CrB₄

Structural distortion of 4d-TMB₄

Conclusions

- 1. Intrinsic correlation between strength and ductility of AI-based materials
- 2. New hardness modeling of polycrystalline materials and bulk metallic glasses

Can we ever be able to find something harder than diamond?